
The Depth of a Financial Model, Continued
Nick DeRobertis

June 9, 2021

1 Using Jupyter to Structure a Python Model
• It can be a bit tricky in the beginning to structure Python models in Jupyter as you are dealing with two

different layers of organization

• Jupyter gives us nicely formatted markdown cells which make it easy to organize sections of the model

• Markdown is actually a general markup language, not anything specific to Jupyter, and it supports a lot of
features. Jupyter has their own extension to markdown which also adds LaTeX equation support

• Most often, you will just need section headers, bullets, and equations, and anything else you can look at a
Markdown reference

• It is easy to add a table of contents for a Jupyter notebook and you should do this to increase the readability
of your model

• When adding a TOC item, spaces get converted to dashes for the reference

2 Salaries in the Python Dynamic Salary Retirement Model
• For development purposes, create a new variable data which is set equal to model_data. When you are done

with the model, you will remove this.

• Write the logic for a function in a cell and run it to ensure it works, then move it into a function

• Using data in the functions while the original variable is model_data ensures that you are not accidentally
accessing the overall (global) model_data when it should be the specific instance of ModelInputs being passed

• This may be confusing and sound like extra unnecessary steps, but setting things up this way will enable
your model to be easily extended

• Here we will create a function which can get the salary in any given year

• We will write also some example code to test the function and show its results

• Later we will use this function in the overall calculation

3 Wealth in the Python Dynamic Salary Retirement Model
• Here we will develop two functions which comprise the wealth sub-model

• First create a function which determines the amount of cash saved in a given year

• Then create a function which determines the amount of wealth in a given year

• We create some example code to show how the function works, but it will actually be applied in the Retirement
sub-model

1



4 Retirement in the Python Dynamic Salary Retirement Model
• Now we will bring everything together to calculate the years to retirement

• The salary and cash saved functions are already getting called from within the wealth function, so we only
need to call the wealth function in the final loop

• Here we are making use of a while loop to stop the loop once a certain condition is met, in this case once
wealth exceeds desired cash

• We will use formatted strings and new lines to create a good display for the output

5 Lab Exercise
• Feel free to work from the example model though I would recommend you build that out yourself following

the prior videos

• This exercise is exactly the same as the one we did for Excel to calculate the desired cash rather than taking
it as an input

• Hint: You should add the new inputs to the ModelInputs dataclass and remove the desired cash input. Then
you can create a function which calculates the desired cash based on the model inputs, and use that in place
of where the desired cash was being accessed directly before

Page 2 of 2


